Welcome to Geology 10

Geology 10: Introductory Geology Summer Quarter, 2024 GEOL 10 (5.0 units) GEOL 10.sec. 55Z & 57Z

Hi and welcome to Introductory Geology. I am looking forward to joining you on a journey of discovery of your home planet. Please think of my role more as a guide on an alien world rather than as a "teacher." Also feel free to contact me if there is anything I can do to help you achieve success in the class.

Dr. D

Course website: on Canvas via your De Anza MyPortal Su 24 GEOL D10 Introductory Geology

Contact Information

Christopher DiLeonardo, Ph.D. Office S14a

(Behind Geology Teaching Lab)

Office Hours by appointment (Via Zoom)

Phone (408) 864-8632

email: dileonardo@deanza.edu

Contact via messaging on Canvas site.

Analysis of the composition, structure, and description of the Earth's external and internal features and the geologic processes responsible for their origin and evolution. Examination of the concepts and principles upon which geologic knowledge is based. One Saturday field trip is required.*

*Introductory Geology online utilizes a virtual field trip available in weeks 5 and 6.

Student Learning Outcomes (SLOs) and Course Objectives

A clear understanding of what you should be learning in any class is essential to your success. Student Learning Outcomes (SLOs) and Course Objectives gives you a general picture of what is covered in the course.

Student Learning Outcomes (SLOs) for GEOL 10: Introductory Geology

Student Learning Outcomes are overarching, clear, and assessable statements that identify and define what a student is able to do at the successful completion of a specific course. These outcomes may involve a combination of knowledge, skills/abilities, and/or attitudes that display behavioral evidence that learning has occurred at a specific level of competency.

- 1. Apply the principles of scientific methodology to test hypotheses on how the Earth works as an integrated system.
- 2. Use data and observations to track and predict changes in the Earth system resulting from dynamic Earth Processes.
- 3. Use observations from the crust and lithosphere of the Earth to determine geologic history at hand sample, outcrop, local, and regional scales.
- 4. Apply scientific methodology and geologic principles to analyze the impact of the Earth system on humanity, from specific natural hazards and the availability, use, and distribution of Earth resources.

Every effort is made so that each student will feel comfortable in a supportive collaborative learning environment. I invite you all to work with me towards achieving that goal. I also invite you to reach out to each other in the class and work with all of your colleagues giving each classmate and their thoughts the respect deserved.

Course Objectives for GEOL 10: Introductory Geology

The course objectives for Introductory Geology expand out of the overarching Student Learning Outcomes. In general, they are intended to foster an understanding of the scientific approach to problem solving and a specific knowledge of the fundamental concepts of geology.

- A. Summarize and describe a globally and temporally inclusive overview of the Earth.
- B. Distinguish between hypotheses, theories, and laws, and demonstrate the assessment of hypotheses through testing.
- C. Analyze the physical properties of minerals and their significance in rock genesis, starting with basic chemical principles.
- D. Distinguish between the major families of rocks and analyze how they relate to each other as parts of the rock cycle; interpret conditions of formation from physical characteristics of rocks.
- E. Evaluate relative age-relationships between rock units in order to develop a geologic time scale, and calibrate this time scale by calculating rock ages via isotopic dating.
- F. Construct and interpret geologic maps and cross-sections in order to delineate the threedimensional structure of the earth's crust; visualize structures such as faults and folds.
- G. Assemble and synthesize geophysical information in order to assess earthquake hazards and to construct plausible models of the Earth's deep interior.
- H. Synthesize geological, seismological, and paleomagnetic data in order to demonstrate an understanding of global plate tectonics, and predict phenomena such as the locations of earthquakes and volcanoes.
- I. Analyze imagery and topographic data in order to elucidate the evolution of landforms produced by the interaction of rock, soil, water, wind, and ice.
- J. Evaluate and assess environmental hazards in a geologic context; assess locations of geologic resources such as mineral deposits and hydrocarbons from geologic data, and appraise the impacts of geologic resource issues on the environment and human populations.

Required Materials

Note: It is your responsibility to be prepared for each class session. Having the required materials, doing readings, having the proper laboratory exercise with you at the right time is important to your success.

Textbook: An Introduction to Geology, Johnson, C., Matthew, A.D., Inkenbrandt, P., Mosher, C. 2017 Salt Lake Community College.

<u>Note</u>: Digital Online Textbook, is a Creative Commons Work, free for noncommercial use. Readings will be available through the Canvas course site.

Lab/Activities: Come from the free digital lab manual: *Introductory Geology Laboratory: Methods and Principles*, v. 1.4, DiLeonardo, C.G. The Earth Discovery Project 2020.

Note: Lab exercises will be available weekly through Canvas site online.

Other: Color pencils and Millimeter scale/ruler

Weekly Class Modules

A module is specific and discrete learning segment that leads to the understanding of a given topic or set of topics. Modules will be assigned by topic on Canvas. Modules include all assignments that will be completed for a particular topical set. A module is a specific and discrete learning segment that leads to the understanding of a given topic. Modules are to be completed within the dates specified on the syllabus (schedule is below). More details on these assignments, including which ones will be turned in, as well as how they will be turned in are explained below and on the assignments themselves.

A Note on Online Learning

Online courses are different from traditional lecture courses. They offer much more flexibility in completing assignments and learning material from sources other than traditional lectures. However, you will need to have good self-discipline in completing these tasks, especially in a timely manner. This is a five-unit lecturelaboratory course. This equates to four hours of lecture and 3 hours of laboratory work per week during a regular quarter. This does not include the extra personal study time needed in addition to those mandatory class hours that the State of California and De Anza College requires. If you are planning on mastering the material covered this quarter, you will need to make sure you 1.) Are engaged in the course at least 7-hours a week (not including study time); 2.) Login at least two different days during the week (to stay current in the course); 3.) Prepare the exams using your notes from online learning tutorials, your completed laboratory activities, and your textbook readings.

Lectures Online

Lectures for the class will be pre-recorded. This gives every student the flexibility to view them at their own convivence. This format also allows you to go over the lectures, or look back at them as needed. Any lectures will be delivered via a link to a YouTube presentation. Other materials will be offered via a link to an online learning resource. Missing the online lectures, much as missing lectures in a traditional class, will severely impact your learning of the subject and impact your work on exams. As much of the exam material comes out of lectures along with readings and laboratory work, vou are encouraged to discipline yourself to go through them in each module and take notes. Notes do not need to be turned into me, but will become invaluable resources along with your textbook in completing the exams.

Laboratory Activities

In each module will be an inquiry-based laboratory activity that leverages the learning on that topic. Each lab will have introductory materials, combination of videos, readings or both. After completing the virtual laboratory module, you will scan it or take pics of each page and upload them to submit via Canvas. Check the lab module page for each week for instructions. You are encouraged to create an *Earth Discovery Journal* where you will keep your completed laboratory work along with notes, etc. This journal will become an invaluable resource when completing both proficiency and concept quizzes as well as the midterm and final exams.

Readings from Web Textbook

This class is designed around an integrated approach to learning. It is very important that you do the reading in the online textbook assigned each week. The book will also be an invaluable resource for preparing the midterm and final exam for the course. The readings are important part, especially in an online course where your work is more independent than a face-to-face classroom situation. Each week you will find a link to online readings in your weekly Class Page on the *Canvas* class site. You should engage in these readings prior to watching the *Learning Tutorial* video series.

Academic Policies

Students are advised to consult their <u>College Catalog</u> or <u>Student Handbook</u> regarding issues of discipline, cheating, etc. The counseling staff and I are also available to discuss college policy as the need arises. You are encouraged to monitor and discuss with me your academic progress in this course. The grading system is clearly outlined below and there will be no "special" projects available to make up for *poor* academic performance. But... the course is designed for your success.

Academic Progress

You are encouraged to monitor and discuss with me your academic progress in this course. The grading system is clearly outlined below and there will be no "special" projects available to make up for *poor* academic performance.

<u>Note</u>: Failure to properly withdraw from the course will result in a letter grade of "F" for the course. Also note students who do not participate in class (turn in at least one assignment by the end of the first week) will be considered a "no show" and dropped from the class. This is a college rule and is mandated by state audit for each class.

Virtual Field Trip

Students enrolled in *Introductory Geology* will participate in a virtual field trip as part of the course. This activity is a required part of the curriculum for the class. Information will be made available later in the quarter.

A Note About Virtual Laboratories & Field Trips

Every effort in this course is made to construct virtual learning experiences that provide the same student learning outcomes as the course offered in a "face-to-face" format. Virtual field trips and laboratories are created with this in mind. Laboratories exercises will be offered weekly that dovetail with the learning presented in *lectures, and web-textbook* readings. Laboratory activities will follow the same sequence generally offered in face-to-face laboratories. Laboratory exercises can be found on the Canvas class site for each week. Follow the instructions on the site. In most cases you need to download and printout a laboratory activity to follow instructions and record your answers. These will not be collected but are invaluable in preparing for quizzes and the midterm and final exams. I encourage you to create an *Earth Discovery Journal*, a notebook that keeps all of

Grading

1,000 pts for the class:

Area A: Methods & Principles

150 pts. In-class laboratory and field projects (collaborative experiences)**

50 pts lab participation first ½ of course 50 pts field workshop participation 50 pts lab participation 2nd ½ of course

Area B: Concepts

150 pts. Concept quizzes

25 pts Earth Science IQ 25 pts Igneous Rocks

25 pts Seismology 25 pts Depositional Environments

25 pts Plate Tectonics 25 pts Geologic Time

Area C: Skill Proficiency Areas

100 pts. Proficiency Quizzes

25 pts Topographic Map Quiz 25 pts Rock Classification Quiz

25 pts Mineral ID Quiz 25 pts Geologic Map & Earth Structures

Quiz

Area D: Application & Synthesis

300 pts. Midterm Exam

150 pts Midterm Exam Part A collaborative take-home

150 pts Midterm Exam Part B online exam

300 pts. Final Exam*

150 pts Final Exam Part A collaborative take-home

150 pts Final Exam Part B online exam

'Final Grade

Plus	S		Let	ter G	rade	Minus	Rubric
A+	>	999 pts	Α	=	895 to 999	A- = 875 to 894	Student displays both a level of knowledge and understanding of Geology & the Earth system superior to the general public.
B+	=	855 to 874	В	=	771 to 854	B- = 750 to 770	Student displays a level of knowledge of Geology & the Earth system significantly above that of the general public; and a basic understanding of the principles of Geology & the Earth system.
C+	=	730 to 749			C =	625 to 730	Student demonstrates a basic knowledge and understanding of Geology & the Earth system above that of the general public.
D+	=	605 to 624	D	=	520 to 604	D- = 500 to 519	Student does not demonstrate knowledge and understanding of
				F	< 500		Geology & the Earth system beyond that of the general public.

Final grades are "non-negotiable" and are based entirely on your performance in class work, quizzes, collaborative experiences, and exams. Once posted, grades cannot be changed unless there is a recording error. This is a matter of State Law. Please don't ask!

Class Schedule Summer 2024

Class Schedule is tentative and subject to change by your professor as deemed necessary, changes to the schedule will be updated on the Class Site in Canvas. All class activities and material, along with readings, lectures and laboratories will be available through the Class Canvas Site. Note: This term is six weeks long, with a final exam given in the sixth week. Summer is twice as intense as a regular quarter with twice as much work required each week.

WEEK
Date / Module

Topic:
Learning Tutorial/Activity/ Assignment

Reading
An Introduction
to Geology

PART I: THE DYNAMIC PLANET

01 The Dynamic Earth

07/01 - 07/07

Module 1 Lecture 1-0: *Science and the Discovery of the*

Restless Earth

Lab Activity 01* Lab: Topographic Maps*

(printout lab worksheet from online lab manual)

Module 2 Lecture 2-1: *Earthquakes* Chap. 9.5 – 9.9

Lecture 2-2: The Tectonic Framework Chap.2.0

of Planet Earth

Lab: Seismology the Instrumental Study of Earthquakes.

(printout lab worksheet from online lab manual)

Due This Week Pre-Class Earth Science IQ Quiz Sunday 7/7

Important Note: Check your schedule for add/drop dates for Summer Term.

02 The Heat Within & Sculpting the Earth

07/08 - 07/14 Lecture 3-1: The Anatomy of a Scientific Revolution Chap. 4.5

Module 3 <u>Lecture 3-2</u>: Volcanism

Lab Activity 03 Lab: Plate Tectonics & Plate Motions

(printout lab worksheet from online lab manual)

Module 4 Lecture 4-0: Running Water: Stream Chap. 11

Erosion and the Evolution of Landscapes

<u>Video Presentation:</u> *Waves, Beaches and* Chap. 12

Coastlines (Earth Revealed Series)

Chap. 1.0

^{**}Each student is required to complete at least 70% of the laboratory work, complete the virtual field trip, and participate in the final examination to receive a passing grade for the class. If these required elements are not completed a student will receive a letter grade of "F" regardless of any other points accumulated in the course.

Lab Activity 04 Evolution of an Integrated Stream System

(printout lab worksheet from online lab manual)

Due This Week Concept Quiz: Seismology Sunday 7/14

Proficiency Quiz: Topographic Maps Sunday 7/14

Concept Quiz: Plate Tectonics Sunday 7/14

* Laboratory activities, for each module, are due on Sunday at 11:55 pm at the end of the week they are assigned.

WEEK
Date / Session
Learning Tutorial/Activity/ Assignment
Learning Tutorial/Activity/ Assignment
to Geology

03 The Changing Face of Planet Earth

07/15 - 07/21

Module 5 <u>Lecture 5-1</u>: Landscapes of Climatic Extreme:

Chap. 13 & 14

Deserts & Glacial Environments

Lecture 5-2: Climate Change

Lab Activity 05 *Modification of Stream Eroded Landscapes*

by Glaciation

(printout lab worksheet from online lab manual)

Midterm Exam* Download Midterm Packet and Part A of Exam

Available on Monday 7/15 due Sunday 7/21

Midterm Part B opens Thursday 7/18 due Sunday 7/21

*Midterm Exam covers topics & laboratory work through Module 5

03 transition The Crystalline Universe

Module 6 Lecture 6-0: Minerals: The Building Blocks of Rocks Chap. 3

Lab Session 06Lab: Mineral Properties and Identification

(printout lab worksheet from online lab manual)

PART II: WRITTEN IN STONE

04 The Record of the Rocks

07/22 - 07/28

Module 7 <u>Lecture 7-0</u>: Crystalline Rocks Chap. 4.1-4.4 Chap. 6

Lab Activity 07 Lab: Rock Textures and Genesis

(printout lab worksheet from online lab manual)

Module 8 Lecture 8-0: Sediments, Sedimentary Rocks Chap. 5

& Environments

Lab Activity 08 <u>Lab</u>: Rock Genesis & Classification

(printout lab worksheet from online lab manual)

Concept Quiz: Igneous Rocks Sunday 7/28 **Due This Week**

Proficiency Quiz: Mineral ID Sunday 7/28

Written in Stone 05

07/29 - 08/04

<u>Lecture 9-0</u>: Geologic Time & Interpreting Module 9

Chap. 7

Earth History

Lab: Earth Structures Part I Lab Activity 09

(printout lab worksheet from online lab manual)

Virtual Field Opens: Monday 07/29

Due: Next Thursday 8/8 11:55 PM PDT Workshop

WEEK Topic: Reading Date / Session Learning Tutorial/Activity/ Assignment An Introduction to Geology

05 ctnd 07/29 - 08/04

Lecture 10-0: Earth Structures & Deformation Module 10 Chap. 9.1 - 9.5

of the Earth's Crust

Lab: Earth Structures Part II Lab Activity 10

(printout lab worksheet from online lab manual)

Due This Week Concept Quiz: Sedimentary Environments Sunday 8/4

Proficiency Quiz: Rock Classification Sunday 8/4

Download Final Exam Packet and Part A of Exam **Final Exam**

> Available on Friday 8/2 due next Thursday 8/8

Final Exam Part B opens Friday 8/4 due next Thursday 8/5**

Check online for withdraw dates for Summer Term. **Important Note:**

06 Game of Stones

08/05 - 08/08**

Virtual Field

Workshop

Due: Thursday 8/8 11:55 PM PDT

Due This Week Concept Quiz: Geologic Time Wednesday 8/9

Proficiency Quiz: Earth Structures Wednesday 8/9

Final Exam Download Final Exam Packet and Part A of Exam

Available starting last Friday 8/2

Due Thursday 8/8

Final Exam Part B opens Friday 8/2 due Thursday 8/8**

** Summer Term ends on Thursday 8/8 by 11:55 pm PDT, all work and exams are due by then.

Enjoy the rest of your Summer!

Dr. D.

Student Learning Outcome(s):

- Apply the principles of scientific methodology to evaluate hypotheses on how the earth works as an integrated system.
- Use data and observations to track and predict changes in the Earth system resulting from dynamic Earth Processes.
- Use observations from the crust and lithosphere of the Earth to determine geologic history at hand-sample, outcrop, local, and regional scales.
- Apply scientific methodology and geologic principles to analyze the impact of the Earth system on humanity, from specific natural hazards and the availability, use, and distribution of Earth resources.

Office Hours: